Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373428

RESUMO

Melanin is a complex natural pigment that is widely present in fungi. The mushroom Ophiocordyceps sinensis has a variety of pharmacological effects. The active substances of O. sinensis have been extensively studied, but few studies have focused on the O. sinensis melanin. In this study, the production of melanin was increased by adding light or oxidative stress, namely, reactive oxygen species (ROS) or reactive nitrogen species (RNS), during liquid fermentation. Subsequently, the structure of the purified melanin was characterized using elemental analysis, ultraviolet-visible absorption spectrum, Fourier transform infrared (FTIR), electron paramagnetic resonance (EPR), and pyrolysis gas chromatography and mass spectrometry (Py-GCMS). Studies have shown that O. sinensis melanin is composed of C (50.59), H (6.18), O (33.90), N (8.19), and S (1.20), with maximum absorbance at 237 nm and typical melanin structures such as benzene, indole, and pyrrole. Additionally, the various biological activities of O. sinensis melanin have been discovered; it can chelate heavy metals and shows a strong ultraviolet-blocking ability. Moreover, O. sinensis melanin can reduce the levels of intracellular reactive oxygen species and counteract the oxidative damage of H2O2 to cells. These results can help us to develop applications of O. sinensis melanin in radiation resistance, heavy metal pollution remediation, and antioxidant use.


Assuntos
Agaricales , Cordyceps , Cordyceps/química , Melaninas/química , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio
2.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887094

RESUMO

Microsporidia are obligate intracellular parasites that infect a wide variety of hosts ranging from invertebrates to vertebrates. These parasites have evolved strategies to directly hijack host mitochondria for manipulating host metabolism and immunity. However, the mechanism of microsporidia interacting with host mitochondria is unclear. In the present study, we show that microsporidian Encephalitozoon greatly induce host mitochondrial fragmentation (HMF) in multiple cells. We then reveal that the parasites promote the phosphorylation of dynamin 1-like protein (DRP1) at the 616th serine (Ser616), and dephosphorylation of the 637th serine (Ser637) by highly activating mitochondrial phosphoglycerate mutase 5 (PGAM5). These phosphorylation modifications result in the translocation of DRP1 from cytosol to the mitochondrial outer membrane, and finally lead to HMF. Furthermore, treatment with mitochondrial division inhibitor 1 (Mdivi1) significantly reduced microsporidian proliferation, indicating that the HMF are crucial for microsporidian replication. In summary, our findings reveal the mechanism that microsporidia manipulate HMF and provide references for further understanding the interactions between these ubiquitous pathogens with host mitochondria.


Assuntos
Microsporídios , Animais , Dinaminas/metabolismo , Microsporídios/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Fosforilação , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...